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MEASUREMENTS

STRENGTHS AND ADVANTAGES

Many independent measurements: 3456 × 4608 = 16 M pixel. 
High dynamic range: 16 bit.
Multispectral: Three wavelengths nominal, Red, Green, Blue.
Black background of outer space: Minimal surface effects.
Readily available data acquisition hardware and software.
Available, easy-to-use image- processing software.
Simplicity: Get going right away.  
Low cost.
Lots of data! 

High resolution: 6 rad nominal (6 mm at 1 km); 20 rad actual. µµ

WEAKNESSES AND LIMITATIONS
Two-dimensional only.
Daytime only.
Limited wavelength range. 
Small fraction of sky; extremely local.
Aerosol masquerades as cloud. 
Lots of data! 

COMMERCIALLY AVAILABLE
HIGH-RESOLUTION CAMERA

1200 mm equivalent 35 mm focal length; f / 5.6

vs.

$350
Todd Vorenkamp, B&H Photo, NYC

$180,000
Nominal resolution 6 µrad (6 mm at 1 km) 
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RESOLVING POWER TEST AT 1 km
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Narrow field-of-view camera at ARM SGP site 
(north central Oklahoma), 07-31-2015. 

Time is UTC; local sun time = UTC - 6.5 h. 

Wide FOV camera is 5.5 × narrow FOV camera. 

OBSERVATION GEOMETRY

Sun, angular diameter 
0.535˚ = 9.3 mrad

Camera FOV, 22 x 29 mrad 
= 2 x 3 sun diameters 

Both drawn 10 times 
actual angular dimension

Moonshot
for comparison 
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AUTOCORRELATION ANALYSIS 
Autocorrelation distance 
~1000 pixels in this example 
corresponds to ~16 m.

Such short autocorrelation 
distances are commonly 
found in these analyses. 

SPATIAL VARIATION

CCNY, 05-22-2015

MOTIVATION
Clouds have a strong impact on Earth s radiation 

budget: -45 W m-2 shortwave; +30 W m-2
longwave.

Slight change in cloud amount or properties could 
augment or offset greenhouse gas induced 
warming – cloud feedbacks.

Accurate representation of cloud radiative effects 
in climate models is essential. 

Clouds exhibit structure on small scales not 
resolved by satellite imagery. 

OPTICALLY THIN CLOUDS HAVE STRONG RADIATIVE EFFECTS
Dependence on shortwave optical depth and cloud-top temperature 

24-Hour average cloud radiative effect, north central Oklahoma, at equinox 
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MULTIPLE MEASURES OF CLOUD EFFECTS ON RADIANCE
AND VERTICAL CLOUD STRUCTURE
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Different quantities are broadly coherent but exhibit different time responses mainly because of differing FOV. 
Clouds exhibit high R/(R + B), optical depth, lidar return; low Ångström exponent. 

TIME DEPENDENCE

ALTERNATIVE MEASURES OF CLOUDINESS AND CLOUD FRACTION 
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There is no unique or unambiguous measure of cloud fraction.

DETERMINATION OF CLOUD OPTICAL DEPTH FROM RADIANCES
From Blue RadianceFrom Red Radiance
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Cloud optical depth is determined with precision of about 0.1 OD over range 0 to 3.
Close agreement for COD from Red and Blue radiances supports the method. 

CLOUD FRACTION

CLOUD OPTICAL DEPTH
Red/(Red + Blue) color ratio is very sensitive to optically thin clouds.

HOW THIN IS AN “OPTICALLY THIN” CLOUD?
If cloud optical depth is 3 . . . 

Number of scattering events is 3 . . . 
Number of drops in vertical column is 1.5 . . . 

Liquid water path (for 15 μm diameter drops) is 10-3 cm 
or 10 g m-2.

If cloud optical depth is 0.3 . . . 
Number of scattering events is 0.3 .  . . 

Number of drops in vertical column is 0.15 . . . 
Liquid water path (for 15 μm diameter drops) is 10-4 cm 
or 1 g m-2.

Thin indeed. But these clouds are radiatively important!

Acknowledgments: DOE Atmospheric System Research Program, ARM Climate Research 
Facility; Matt Gibson, James Martin, Rob Newsom, ARM; Antonio Aguirre, City Tech; 
Clement Li, CCNY. 

CONCLUSIONS
• Photography of clouds from the surface provides a 

novel way of looking at clouds and their radiative effects 
at much higher resolution than other cloud imaging 
techniques.

• Readily available commercial cameras provide a 
resolution of about 20 µrad (corresponding to 20 mm 
for cloud base at 1 km), 3 orders of magnitude higher 
than typical satellite products.

• Autocorrelation distances are commonly of order a 
few meters.

• Cloud area fraction, a widely used product of surface-
based and satellite observations, is inherently 
dependent on choice of threshold.

• Cloud optical depth can be accurately retrieved at 
native resolution of the camera for optically thin 
clouds, optical depth < 3.~

• Cloud properties are highly variable in space (a few 
meters or less) and time (a few seconds or less).

THEORY

DETERMINING CLOUD OPTICAL DEPTHS 
FROM IMAGES

Scaled radiances are inverted at a given solar zenith angle to yield cloud 
optical depth COD as a function of normalized radiance at each of the two 
wavelengths:
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Inversion is valid for optically thin clouds, COD    3. ~  < 

RADIATION TRANSFER CALCULATIONS
Calculations with DISORT

Normalized zenith radiance = zenith radiance/incident irradiance, sr-1

Zenith radiance initially increases with increasing cloud optical depth 
COD, before decreasing with optically thick clouds.
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Rs = Rmin +
C Cmin

Cmax Cmin
(Rmax Rmin )

Cmin and Cmax from images; Rmin and Rmax from radiation transfer 
calculations.

SCALING OF INTENSITIES FROM IMAGES
Identify cloud-free and bright cloud regions of image. Scaled normalized 
radiance R  is evaluated from measured count rate C as s

SOME INITIAL RESULTS
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ZOOMING IN ON SPATIAL VARIABILITY

ZOOMING IN, IN SPACE AND TIME: THREE MINUTES IN OKLAHOMA
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Wide field of view 240 × 320 m
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Narrow field of view 43 × 57 m

07-31-2015; UTC time; local sun time = UTC - 6.5 h; 16:33 = 10:03 sun time.


